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Abstract

What explain the decline in the real rates despite soaring government debt? What do low

rates imply about the riskiness of government debt? I show that government bond becomes a

safe asset, when government default signi�cantly reduces the returns to other assets. A neg-

ative shift in fundamentals of the safe asset increases its price and the risk premium. When

government bond is a safe asset, it can have an upward-sloping demand curve for interme-

diate levels of borrowing. This happens because more borrowing increases aggregate risk

and demand for safety, while government bond remains the relatively safer asset. In such a

case, an increase in government borrowing increases the price of bonds, reduces the price of

other assets, and increases the risk premium. The existence of an upward-sloping demand

curve depends on the reversed hazard rate of the distribution of future tax revenues. Factors

that increase the systemic risk of government debt, including higher fraction of government

debt to other investors’ assets, higher riskiness of the payo�s to other assets and investors’

indebtedness, make an upward-sloping demand curve more likely. These �ndings also sug-

gest more caution in interpreting the currently low real rates, as price of a safe asset and its

default risk can comove positively.
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1 Introduction

Despite a signi�cant surge in government borrowing after the Financial Crisis of 2008 and during

the ongoing COVID-19 pandemic, real interest rates on government bonds have been declining

in many economies (Figure 1). It has been argued that low real interest rates might imply that

more government borrowing have low �scal costs (Blanchard (2019)). Others have cautioned

that even though the current rates are low, more borrowing can make government subject to

bad self-ful�lling equilibria (Farhi and Maggiori (2018), Cochrane (2021)). What can explain the

decline in the real rates on government debt? What do these low rates imply about the riskiness

of government debt?

I show that when government debt is systemic, a deterioration in the distribution of future

tax revenues or an increase in government debt can reduce the real rate on government bonds,

while increasing the risk of default. Government defaults often lead to severe contractions in out-

put (Mendoza and Yue (2012), Trebesch and Zabel (2017)). These contractions can be even more

severe when government defaults are accompanied by banking crises (Gennaioli et al. (2014)).

Government default can also be detrimental to the economy, when a signi�cant fraction of gov-

ernment debt is held by domestic shadow banks. For example, 12% of U.S. government debt is

held by U.S. mutual funds. Moreover, when signi�cant quantities of government debt is held ex-

ternally, a government default can adversely a�ect the balance sheets of foreign holders of the

debt. For example, signi�cant fractions of U.S. and German debt are held by foreign investors.12

In this paper, I study the demand for systemic government debt. I show that government bond

becomes a safe asset if government default signi�cantly reduces the return to other existing assets

,i.e., entails systemic risk. When government bond is a safe asset, a negative shift in or an increase

in riskiness of the distribution of future tax revenues increase the bond price and the default risk at

the same time. Such changes in future economic prospects also decrease the price of other assets,

and increase the risk premium. Moreover, under such conditions, the government might face an

upward-sloping demand curve for intermediate levels of borrowing: more issuance increases both

the bond price and the default risk. Under an upward-sloping demand curve, more borrowing

by the government increases the risk premium. I also show the upward-sloping segment of the

demand for government debt always ends in an in�ection point: for high enough level of debt,

further supply decreases the price.

Shortage of safe assets has been argued to be a major cause of the decline in the real rates

(Caballero et al. (2017), Del Negroa et al. (2019)).3 My theory suggests that the signi�cant increase

1See https://www.cbo.gov/publication/56309, for the composition of U.S. debt holders.
2In the case of U.S. government debt, a default can be even more costly due to the especial role of dollar assets in

the global trade and �nance. See Gourinchas (2019).
3There are more than a few explanations for the secular decline in the real interest rates. I consider my model as
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Figure 1: Government debt to GDP in blue (left axis), and long-term (10 years) real rates in red

(right axis). Both are in percents. Data is from OECD and the author’s calculations.

in the supply of government debt and its systemic risks especially after the Financial Crisis of

2007-2008, may have exacerbated this "shortage" and contributed to even lower levels for real

rates. In other words, supply of systemic safe assets by governments may have increased the

demand for the same assets.

A testable prediction of the model is that, all else equal, higher systemic risk of government

debt makes an upward-sloping demand curve more likely. Factors that increase systemic risk

include higher fraction of government debt to other investors’ assets, higher riskiness of the pay-

o�s to other assets, and higher investors’ indebtedness. The holdings of own government debt

by banks are signi�cant in both advanced economies and emerging markets. The evidence also

suggests that banks in advanced economies and emerging markets have signi�cantly increased

their holdings of own sovereign debt after 2007, thereby increasing the systemic risk of govern-

ment debt (Dell’Ariccia et al. (2018), Feyen and Zuccardi (2019), Arslanalp and Tsuda (2014)). My

�ndings also imply that when government bond is systemic, the price of bonds, i.e., inverse of

real borrowing rates, and the risk of default might comove positively. Under such conditions,

a complementary to the explanation based on safe asset shortage. For more theories on the decline of the real rates,

see Del Negroa et al. (2019), and references therein.
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bond price can be a misleading indicator of the default risk. Moreover, the existence of in�ection

points suggests that the real rates will start rising for high enough levels of government debt.

A brief description of the model is as follows. I consider an economy with two dates and

two assets: government bond and a real asset or "project" that is in �xed supply. There are three

agents, a government, a continuum of investors and a representative household. The government

has to raise resources by issuing bonds to pay for an exogenous amount of spending. Investors

are the only agents that have resources to purchase government bonds at the initial date. One

can think of investors in my model as banks or shadow banks. Household’s future income is

stochastic and can be taxed, up to a limit, by the government to repay its debts to investors.

The government pays its debts in full as long as there are enough tax revenues, and otherwise

defaults. In the event of a default, investors are paid an exogenous fraction 0 ≤ z < 1 of the

promised debt payments. Besides government bonds, investors hold a real asset or "project"

each, at the beginning of the initial period. The investor needs to pay a �xed and exogenous

maintenance cost for the project in the second period, in order to guarantee a high return on

the project. This maintenance cost can capture any liquidity needs in a stylized way. Examples

include rolling over maturing debt or �nancing working capital. If the maintenance cost is not

paid, the project would have a low return with an exogenous probability 0 < p ≤ 1, which is

independent across the continuum of projects. The only resources the investor can use in the

second period to cover the project’s maintenance cost is the government repayments of its debt.

Hence, when government defaults, investors holding the bonds may not be able to pay for the

project maintenance costs. This implies that government default a�ects the return on projects.

The probability p is a measure of correlation between the risks to the government bonds and the

project. A higher p implies a higher likelihood of low returns to both assets happening at the

same time, and more aggregate risk.

The intuition behind an upward-sloping demand curve is as follows. Higher supply of gov-

ernment bonds a�ects the price through two channels. First, even absent default, a higher level of

borrowing by the government increases the consumption of investors and reduces the expected

marginal utility of an extra unit of investment in the bond. This unambiguously reduces the price

of bond. I call this the diminishing expected marginal utilities e�ect. At the same time, a higher

level of borrowing increases the probability of default. When project’s expected payo� depends

on the incident of default, this increases the demand for insurance by investors and tends to in-

crease the price of bond. The reason is that default reduces the return to the project signi�cantly

so that government bond still remains the safest asset. I call this the change in aggregate risk ef-

fect. A positive sum of diminishing expected marginal utilities and change in aggregate risk e�ects

implies an upward-sloping demand curve.

I demonstrate that, in general, the net impact of diminishing expected marginal utilities and
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change in aggregate risk e�ects depends on the reversed hazard rate of the future tax revenues

distribution. I show that when the density function of future tax revenues is convex on its left tail,

and the return to other assets in the no-default state is high enough, investors have an upward-

sloping demand for some values of bond holding. Convexity of the density function on the left tail

provides a su�cient, and not necessary, condition for the existence of a (partially) upward-sloping

demand curve. Nonetheless, this condition holds for many distributions including normal, log

normal, and Weibull distributions.

There are two necessary conditions on the parameters of the model for the government bonds

to have an (partially) upward-sloping demand curve. First, given the high and low values for the

project return, the default value or the recovery rate of the bond should not be too low (and

strictly above zero). The reason is that when the default value is too low, government bond

becomes riskier than the project. In this case, higher risk of default lowers the (negative) risk

premium on the bond and reduces the price of bond. Second, the probability p has to be higher

than a threshold, which is a function of the return pro�le of the project. The reason is that a high

value of p is needed so that default can create signi�cant aggregate risk for the investors.

I introduce a market for shares in the projects held by investors. I show that when the demand

for government bond is upward-sloping, an increase in borrowing increases the relative price of

bonds to shares or what I call the risk premium. The reason is that government bond is the safe

asset in this case. An increase in the aggregate risk increases the demand for insurance which

raises the relative demand for government bonds.

In my benchmark model, I use maintenance cost as the micro foundation to produce the main

results. There are other mechanisms that can make government bonds a safe asset and can po-

tentially lead to an upward-sloping demand curve. I consider one such alternative mechanism.

I study a model similar to the benchmark with one important change. Instead of the project,

investors hold old government bonds from previous periods, which has been partly �nanced by

previously issued liabilities. One can think of these previously issued liabilities as any type of

funding for the pre-existing government debt, such as deposits, repo, and commercial paper. I

assume that both the old bonds and old liabilities mature in the second period. The key assump-

tion is that a default on newly issued bonds leads to a default on the old bonds. Under these

conditions, when the sum of old and new bonds are large enough, the demand curve can become

upward-sloping. This implies that for low levels of new bond issuance, a high level old bonds

makes an upward-sloping demand curve more likely. Moreover, I show that under certain condi-

tions, an increase in the investor’s pre-existing debt increases the slope of the demand curve for

the newly issued bonds. The reason is that a higher level of old liabilities makes the return to the

old assets and liabilities riskier for any given level of default probability.

The rest of the paper is organized as follows. Section 2 discusses the related literature. In
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Section 3, I present the benchmarkmodel. I discuss the balance sheet e�ect in Section 4 as another

mechanism to reach the same results as in the benchmark model. Finally, Section 5 concludes.

2 Related Literature

Liu (2019) and Cochrane (2020) �nd that higher debt to GDP ratios are associated with lower real

interest rates. These �ndings are consistent with an upward-sloping demand curve for the U.S.

debt. Liu (2019) �nds that higher debt to GDP ratios are associated with higher measures of �scal

uncertainty, which can explain the the e�ect of higher debt on risk premia and real rates. My

model is complementary to the mechanism in Liu (2019).

Krishnamurthy and Vissing-Jorgensen (2012) �nd that a higher U.S. debt to GDP reduces both

liquidity and safety premium of Treasury debt. In contrast, Liu (2019) and Liu et al. (2020) �nd

that an increase in the U.S. debt to GDP ratio predicts higher excess stock returns and is correlated

with higher credit risk premia. My model is consistent with the latter �ndings.

He et al. (2019) present a model of safe asset determination in a two country setup. They

�nd that a larger bond issuance and better relative fundamentals can make a country’s bond safe.

He et al. (2019) also �nd that a deterioration in the world-level fundamental can increase the

price of the safe country’s bond, while reducing the price of the other, i.e., �ight to safty. In my

model, government bonds can become safe asset when government default dampens the return

to the other assets. Moreover, even a deterioration in fundamentals of the issuer of the safe asset

increases the price of bonds and increases the risk premia.

In Farhi and Maggiori (2018), the supply of the safe (or reserve) asset can make the hegemon

country susceptible to self-ful�lling con�dence-crisis. Although there is no con�dence-crisis in

my model, I show the nature of a safe asset such as U.S. Treasuries can weaken or even reverse

the impact of higher risks on the bond price, and risk premia.

Several recent papers, including Chernov et al. (2020) and Dittmar et al. (2019), study the U.S.

sovereign default risk. Chernov et al. (2020) show that the U.S. CDS premiums, which have been

elevated since the Financial Crisis of 2008, re�ect the endogenous risk-adjusted probabilities of

�scal default. Dittmar et al. (2019) examine the relative pricing of nominal Treasury bonds and

Treasury in�ation-protected securities (TIPS) in the presence of United States default risk. They

show that most of the relative mispricing after the crisis is due to default risk.

Gennaioli et al. (2014) �nd that domestic government debt held by banks is, on average, 11.8%

of their total assets. They also document that 67% of government defaults are accompanied by

banking crises in their sample. This suggests that government bond is likely to be systemic in

many countries, and shows the plausibility of the mechanism modeled in this paper.
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3 Model

There are two periods t = 0, 1. The economy consists of a government, a representative house-

hold, and a measure one of ex-ante identical investors. The model economy can capture both a

closed economy and the global economy. The main di�erence in these two interpretations is that

investors are domestic in one and foreign in the other.

The household has no income at t = 0 but receives a stochastic endowment y1 at t = 1. I

assume that only a maximum fraction 0 < τ ≤ 1 of y1 can be taxed by the government, and that

τy1 is distributed according a cumulative distribution function F . Suppose that the household

consumes only in t = 1. To avoid a large utility cost to the household, the government has

to �nance a de�cit equal to д0 units of t = 0 consumption goods. To do that, the government

can sell b1 units of bonds to the investors, at time t = 0, each unit of which pays o� one unit

of consumption goods at t = 1. Let q0 denote the price of this bond in units of time t = 0

consumption goods. The government uses the tax receipts τy1 to pay back its debt. Since y1 is

stochastic, for high enough b1, the government may not be able to pay its debt obligations in full

and defaults. If the government defaults on its debt, I assume that the creditors can recover zb1,

where 0 ≤ z < 1. I assume that the government debt pays o� at the beginning of t = 1. Each

investor has an endowment y0 at t = 0, and the following preferences:

U
∗
= c0 + E0

[

ln(c1)
]

.

c0 and c1 are consumption at the current and future dates. Note that there is no time dis-

counting for simplicity. Each investor also holds a project, i.e., real asset, at the initial date that

pays o� at the end of t = 1. Before its completion, the investor needs to spend δ > 0 units of

time t = 1 consumption goods at the beginning of t = 1 in order to maintain the project. If the

full maintenance cost δ is paid, the project yields a payo� of aH . Otherwise, if δ is not paid, the

project’s payo� decreases to 0 < aL < aH with probability p ∈ [0, 1], or remains aH with proba-

bility 1−p. The maintenance cost in my model is similar to the liquidity shock in Holmström and

Tirole (1998). The di�erence is that unlike Holmström and Tirole (1998), the return in the event

of not covering the liquidity needs can be stochastic while the size of the liquidity shock is not. I

assume that the realization of project’s payo� across di�erent projects are i.i.d across investors,

and that this idiosyncratic risk can not be insured. The following assumption ensures that it is

always optimal for the investor to pay the maintenance cost if she can:

Assumption 1. p ≥ δ
aH−aL

.

One can think of investors as banks, shadow banks, or any other entity that might entail

signi�cant negative spillovers to the real sector of the economy under �nancial stress. Gennaioli
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et al. (2014) �nd that domestic government debt held by banks is, on average, 11.8% of their total

assets. They also document that 67% of government defaults are accompanied by banking crises

in their sample. This suggests that it is plausible to think of investors in my model as banks or

shadow banks.

Project in this model can capture real investments by banks and shadow banks. Banks and

shadow banks often need to provide liquidity to their borrowers in the corporate sector to pay

o� short term debt or to use as working capital. The maintenance cost in mymodel, is an stylized

way to capture this type of liquidity provision. In this interpretation, the probability p depends

on factors such as the leverage of the borrowers in the household or non-�nancial corporate

sector. The reason is that liquidity problems are more likely to turn into solvency problems,

when borrowers have high leverage.

Note that Assumption 1 implies that aH − δ ≥ aL. The timing is as follows. At t = 0, investor

decides how many government bonds to buy. At t = 1, �rst, the government pays o� its debt

or defaults. Next, investor pays the maintenance cost of the project, using what she receives

from the government. Finally, the project pays o� and investor consumes whatever consumption

goods are left after paying for the maintenance.

Discussion of the Assumptions The assumption that the household does not have any

endowments at t = 0, is to simplify the analysis. Similar results can be obtained, if the household

can also purchase government bonds, as long as it is the investors who price the assets at the

margin.

The quasi-linear preferences for investors also helps to further simplify the characterization

of the demand for government borrowing by eliminating the income e�ects. For other prefer-

ences, as long as the income e�ect is not too large, the results obtained in my model should

hold. Moreover, if the marginal investor already holds government bonds before purchasing any

new bonds at the initial date, the income e�ect of a higher bond price can increase, rather than

decrease, the investor’s demand.

Note that, default in my model can capture the possibility of either a �scal default or higher

than expected in�ation. Moreover, I assume that government does not default strategically: it

pays its debt obligations as long as its feasible to do so. But, one can write a similar model

with strategic default that yields the same qualitative predictions. To do that, I can introduce

a stochastic �xed cost of default. This cost re�ects reputational cost or costs associated with

losing access to world market. It can depend on macroeconomic conditions, which make the cost

stochastic.

Finally, there are other micro-foundations that can generate the same demand function for

government bonds. I study one alternative in later sections, which uses the balance sheet e�ect

of government bond holdings.
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3.1 Equilibrium

I start with the investor’s optimal consumption-saving problem. When b1 < δ , the investor

cannot pay themaintenance costs, whether or not government defaults. In contrast, when δ
z ≤ b1,

the investor can always pay for the maintenance costs of the project. In Lemma 1, I provide the

resulting demand curve in these two cases.

Next, I focus on the most interesting case, in which the investor can pay for the maintenance

cost only when the government is not in default. Note that this happens only if δ ≤ b1 <
δ
z .

Within this range, investor solves:






U = maxc∗
0
,b1 c
∗
0 +
{

(1 − πD ) ln(aH − δ + b1) + πD
[

(1 − p) ln(aH + zb1) + p ln(aL + zb1)
] }

,

s .t . c∗0 + q0b1 = y
∗
0 .

πD is the probability of default by the government, and q0 is the price of bond, which are

taken as given by the investor. Given the quasi-linear preferences, the �rst order condition (FOC)

with respect to c∗0 implies a Lagrange multiplier for the budget constraint equal to one. Using

this fact along with the FOC with respect to b1 give the following equation for the demand for

government bonds:

q0 =
1 − πD

aH − δ + b1
+ πD
[ (1 − p)z

aH + zb1
+

pz

aL + zb1

]

. (1)

Government defaults only if the tax receipts are less than the debt payments, or b1 > τy1. There-

fore, the probability of default is equal to πD = F (b1). Putting this back into 1, gives the following

result:

Lemma 1. The following characterizes the demand for government bonds by investors:

q0 =






[
(1−p)

aH+b1
+

p

aL+b1

]

(1 − F (b1)) +
[
(1−p)z

aH+zb1
+

pz

aL+zb1

]

F (b1) i f b1 < δ ,

1−F (b1 )
aH−δ+b1

+
[
(1−p)z

aH+zb1
+

pz

aL+zb1

]

F (b1) i f δ ≤ b1 <
δ
z
,

1−F (b1 )
aH−δ+b1

+
zF (b1)

aH−δ+zb1
i f δ

z ≤ b1 .

Moreover,
∂q0
∂b1
< 0 for all b1 < [δ ,

δ
z
).

Wheneverb1 < [δ ,
δ
z ), the demand for government bonds is downward sloping. Also, note that

when there is no default, i.e., z = 1, investors always pay the maintenance costs for b1 ≥ δ , and
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do not pay the maintenance costs for b1 < δ . In this case the demand collapses to q0 =
1

aH−δ+b1

and
(1−p)z

aH+zb1
+

pz

aL+zb1
, for b1 ≥ δ and b1 < δ , respectively. In either case, the demand is strictly

decreasing in b1.

Now, consider the case of z = 0. In this case, the second term on the RHS of the demand

schedule above is zero. Given that F (b1) is increasing in b1, the RHS and hence q0 is unambigu-

ously decreasing in b1. This implies that in order to have a upward-sloping demand curve, one

needs z > 0. More generally, taking the derivative with respect to b1, one obtains:

∂q0

∂b1
=−

{
1 − F (b1)

(aH − δ + b1)2
+
[ (1 − p)z2

(aH + zb1)2
+

pz2

(aL + zb1)2

]

F (b1)
}

︸                                                                   ︷︷                                                                   ︸

A

+ (2)

(3)

+
[ (1 − p)z

aH + zb1
+

pz

aL + zb1
−

1

aH − δ + b1

]

f (b1)

︸                                                  ︷︷                                                  ︸

B

. (4)

f (b1) is the probability density function associated with F (b1). There are two parts to RHS of

the equation above. The �rst part, denoted by A, is the result of diminishing expected marginal

utility of consumption: holding more bonds results in more consumption, and a lower marginal

utility of purchasing an extra unit of bond. This e�ect is present even absent any risks, and is

unambiguously negative implying a lower price.

The second part of RHS in 2, denoted by B, captures the change in aggregate risk. B appears

in the equation for the price because an increase in borrowing creates more default risk. This

component takes into account the increase in risk that is due to higher probability of default,

measured by f (b1). B also depends on the di�erence betweenmarginal utilities of an extra unit of

bond across the two states of default and no-default. When this di�erence is negative, purchasing

one extra unit of bond creates reduces the insurance provided by the government bond, because

the investor gains less utility in default relative to the no-default state. Therefore, in this case an

increase in b1 lowers the the bond price even further. This is the case, for example, when p is too

low. The reason is that, given aH −δ <
aH
z
, when p is too low, the marginal utility gained from an

extra unit of bond is always lower in the state of default. Moreover, when aH −δ <
aL
z , a marginal

increase in bond holding reduces B, regardless of the value of p.

B becomes positivewhenp is high and aH−δ >
aL
z
. If the increase in the aggregate risk is large

enough, the net e�ect of A and B can become positive. In such a case, government bonds face an

upward-sloping demand curve. In other words, the increase in the riskiness of the safe asset can

increase the aggregate risk and the demand for insurance, thereby increasing the demand for the

safe asset.
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Figure 2: Triangular distributions of future tax revenues. The red density function is a mean

preserving spread of the blue density function.

Finally, to close the model, one needs to impose the marketing clearing in the bonds market.

The supply curve of government bonds dictates that д0 = q0b1. This de�nes the supply curve as a

decreasing function of b1. The intersection between the supply and demand gives the equilibrium

price and quantity (Figure 3).

3.2 Relative Safety and the Risk Premium

Flight to safety is a well documented phenomenon during periods of heightened risk, such as the

Financial Crisis of 2007-2008 or the ongoing COVID-19 pandemic. Flight to safety seems intuitive

when government bond is default free. But, how does a worsening of economic fundamentals of

the safe asset a�ect its demand, and the demand for other assets?

To simplify the analysis, I assume p = 1 for this subsection. Suppose that investors can buy

and sell shares in their projects to other investors at t = 0. Each share of any given project is a

promise to deliver one unit of consumption in the no-default state and aL
aH−δ

units of consumption

if government defaults. Note that there are a total of aH − δ of shares for any project. I assume

that the investor who buys shares must pay the maintenance costs proportional to the amount
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of shares she holds in order to guarantee the promised payo�s. Since all projects are the same,

investors can buy a share of the projects pool. Hence, for values of δ ≤ b1 <
δ
z , an investor solves:






U = maxc0 ,θ1 ,b1 c0 +
{

(1 − πD ) ln(θ1 + b1) + πD ln( aL
aH−δ

θ1 + zb1)
}

,

s .t . c0 + q
a
0θ1 + q0b1 = y0 + q

a
0 (aH − δ ) .

qa0 is the price of a unit of share, and θ1 is the number of shares purchased. Note that the

equilibrium allocation is exactly the same as before, except that the project can be priced. Using

the FOC with respect to θ1, the market clearing condition θ1 = aH − δ , and that πD = F (b1) in

general equilibrium, I obtain:





q0 =
1−F (b1 )
aH−δ+b1

+
zF (b1)
aL+zb1

,

qa0 =
1−F (b1 )
aH−δ+b1

+

aL

aH −δ
F (b1)

aL+zb1
.

(5)

When aL
z < aH − δ , it is clear from 5 that qa0 < q0. The reason is that project share is riskier

than government bond. For any promised unit of consumption in the no-default state, a unit of

bond and a share deliver z and aL
aH−δ

in the default state, respectively. If aL
aH−δ

< z (or equivalently
aL
z < aH − δ ), shares pay less in the default state, are riskier and cheaper than bonds.

To study �ight to safety, consider a negative shock to future tax revenues that changes the cu-

mulative density to F̃ (b1). Suppose that F̃ (b1) �rst order stochastically dominates F (b1): F (b1) <

F̃ (b1), for all b1. If aL
z < aH − δ , this negative shift increases the price of bond in 5, because

1
aH−δ+b1

< z
aL+zb1

. A negative shift in revenues also decreases the price of share given in 5, because

1
aH−δ+b1

>

aL

aH −δ

aL+zb1
. It follows that a negative shock to future tax revenues distribution increases the

risk premium,
q0
qa0
.

Although a worse prospect of future tax revenues distribution increases the default risk of the

bond, such a negative shock increases both the bond price and the risk premium. The reason is

that while bond becomes riskier as a result of a negative shock to future tax revenues, it remains

the safer asset. The following lemma shows a similar result when the new income distribution is

a mean-preserving spread of the old one:

Lemma 2. Suppose that the future tax revenues distribution f (b1) changes to another symmetric

triangular distribution f̃ (b1). Assume that f̃ (b1) has the same mean as f (b1), and the domain
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Figure 3: Supply and demand for government bonds. Demand curve is upward-sloping for the

intermediate levels of government borrowing. Parameter values are aH = 7, aL = 1, z = 0.2,

δ = 0.6, τy = 1, and τȳ = 3.

[b",b"], where b" = b − ϵ and b" = b + ϵ . Then, the price of bond is higher and the price of share is

lower under f̃ (b1), for all b1 <
b+b

2
.

Put simply, an increase in the risk without any change in the mean of the income distribution

increases the bond price and decreases the price of share. As a result, an increase in risk also

increases the risk premium.

The analysis so far assumed δ ≤ b1 <
δ
z . When b1 < [δ ,

δ
z ), however, the above results do not

hold. In particular, one can show that when b1 is too high or too low, a �rst order stochastically

dominant shift in F (b1) increases q
a
0 and reduces q0 and the risk premium,

q0
qa0
. This implies that

government bonds behave like a safe asset, when the relative supply of bonds to shares of the

project in the aggregate, i.e., b1
θ1
, is within an intermediate range. Note that θ1 = aH − δ in the

benchmark model. Given that investors in this model can be thought of as banks or shadow

banks, this also implies that government debt needs to be held in large enough quantities relative

to the size of �nancial intermediaries’ balance sheets in order to start behaving like a safe asset.
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3.3 Upward-Sloping Demand Curve

The following conditions are necessary for an upward-sloping demand curve to exist:

Proposition 1. Two necessary conditions for an upward-sloping demand curve are:






p ≥
aL (1−z)
(aH−aL )z

,

aH − δ >
aL
z .

Moreover, one has:

∂q0

∂b1
|p=1 > 0⇒

∂2q0

∂p∂b1
> 0 .

The value of p is a measure of correlation between the payo�s of the two available assets,

namely government bond and the project. When p is high, default by the government lowers the

expected payo� to the project signi�cantly, which increases the di�erence in expected marginal

utilities of an extra unit of bond across default and no-default. This implies higher aggregate risk

and increases the demand for insurance by investors and the price of bond.

Given z, the second necessary condition in Proposition 1 states that aL must be low enough

relative to aH or, in other words, government default should in�ict a sizable damage to the rest

of the economy. As mentioned before, the second necessary condition also implies that z can not

be too low. Note that default in this model can capture both a �scal default and in�ation.

The meaning of the second result in Proposition 1 is as follows. When demand for bond is

upward sloping at p = 1, lowering p decreases the slope of the demand curve: it is less likely to

have an upward-sloping demand curve for lower values of p.

It is important to note that whenever the demand curve for b1 is upward sloping, an increase

in government expenditures д0 increases the equilibrium price of government bonds. A positive

relationship between b1 and bond price q0 implies a positive relationship between д0 = q0b1 and

bond price: the demand curve is upward sloping no matter how one measures government debt.

I state this simple but important observation in the following lemma.

Lemma 3. If
∂q0
∂b1
≥ 0 in equilibrium, then

∂q0
∂д0
≥ 0.

To construct an example of an upward-sloping demand curve for government bonds, I assume

that f (b1) is a triangular distribution (Figure 2). Later, I discuss what can be shown for somewhat

more general class of distributions. Suppose that f (b1) is a symmetric triangular distribution over

13



[b ,b], which is de�ned as follows:

f (b1) ≡






4(b1−b )

(b−b )2
b1 ∈ [b ,

b+b

2
] ,

4(b−b1 )

(b−b )2
b1 ∈ [

b+b

2
,b] .

(6)

where b ≡ τy and b ≡ τy are the minimum and maximum values of tax collected by the gov-

ernment at t = 1. I also make the following assumptions to ensure that tax receipts are always

enough to pay the default value to the investors, and that δ ≤ b1 ≤
δ
z
:

Assumption 2. zy < y, δ < b, and b < δ
z
.

From now on, I also set p = 1 to further simplify the analysis in this and subsequent sections.

The cumulative density function for b1 ∈ [b ,
b+b

2
] is:

F (b1) = 2
(b1 − b

b − b

)2

. (7)

For all b1 ∈ [b ,
b+b

2
], 1 implies:

∂q0

∂b1
∝
aH −

aL
z − δ

aL
z + b1

(b1 − b

b − b

)2{ 2

b1 − b
−
[ 1
aL
z + b1

+
1

aH − δ + b1

] }

−
1

aH − δ + b1
. (8)

The term in the braces in 8 is always positive. Moreover, for values of b1 close to b, the �rst term

in the expression on the RHS is close to zero, which implies that the slope of the demand curve

is unambiguously negative. But, for a given a value of b1 ∈ [b ,
b+b

2
], a large enough value of aH

implies a positive slope of demand curve at b1:

Proposition 2. For any b̃1 ∈ (b ,
b+b

2
], if aH − δ − aL

z
is large enough, one has

∂q0
∂b1
> 0 for all

b1 ∈ [b̃1,
b+b

2
]. Moreover, for given values of aH and aL, there exists b̂1 > b such that

∂q0
∂b1
< 0, for all

b1 ∈ [b , b̃1].

For low values of borrowing, the demand curve is downward sloping. But, there is a point at

which the slope of the demand curve turns positive, and stays positive at least until the mean of

the distribution,
b+b

2
. The reason behind an upward-sloping demand curve is that what matters is

not the absolute safety of the bond but its riskiness relative to other investments. In other words,

government bond is a safe asset because it remains safer than the share even when default risk

goes up.

14
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Figure 4: Demand for government bonds and the risk premium. Demand curve is upward-sloping

for the intermediate levels of government borrowing. Parameter values are aH = 7, aL = 1,

z = 0.2, δ = 0.6, τy = 1, and τȳ = 3.

A higher value of aH−δ−
aL
z
can re�ectmore riskiness of the project’s payo�. Higher riskiness

can be due to a higher aH , a lower aL, or a higher p. As discussed before, examples of project in

this model include investments by banks and shadow banks. One factor that can increase the

riskiness of these investments in the real world is high leverage of both borrowers and lenders.

More than a decade after the Financial Crisis of 2008, banks and many shadow banks remain

highly leveraged entities. The non-�nancial corporate debt as a fraction of GDP has been on

the rise in Euro area, the U.S., and China.4 Although borrowers and lenders are not explicitly

modeled, one can think of a higher leverage of banks and shadow banks, i.e., investors, to be

re�ected in a higher upside aH . A higher leverage in the household or the corporate sector, on

the other hand, can be captured by a higher p: liquidity problems are more likely to become

solvency problems when �rms have high leverage. I study the e�ect of investors’ indebtedness

more explicitly in Section 4.

Figure 3 is an illustration of an partially upward-sloping demand curve for government bonds.

In Lemma 1, I have already shown that demand for government debt is downward sloping when

4See April 2019 issue of the Global Financial Stability Report, published by IMF.
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b1 < [δ , δz ). But, Figure 3 shows that demand curve becomes downward sloping in the left and

right tails of the domain of b1, even when b1 ∈ [δ , δz ). I show in the next subsection that this

property is rather general and does not depend on the particular distribution used in this subsec-

tion.

Liu (2019) �nds that an increase in U.S. government debt is associated with lower short term

rate. Cochrane (2020) also �nds that large amounts of debt correspond to low subsequent returns.

These �ndings are consistent with an upward-sloping demand curve for U.S. debt.

How does an increase in borrowing a�ect the risk premium, i.e., price of bond relative to

share? In general, the risk premium, or
q0
qa
0
, can increase or decrease with respect to an increase

in b1. But, one can be more speci�c under upward-sloping demand curve:

Lemma 4.
q0
qa0

is increasing in b1, if
∂q0
∂b1
≥ 0.

When the demand for bond is upward sloping, an increase in default risk increases the risk

premium (Figure 4). This is intuitive because, facing with a higher level of default risk, investors

value safety even more. This causes a shift in their demand for bonds relative to shares, which

increases their relative price,
q0
qa
0
, in equilibrium.

Krishnamurthy and Vissing-Jorgensen (2012) �nd that the spread between AAA-rated cor-

porate bonds and U.S. treasury is negatively correlated with the debt to GDP ratio. They show

that both the safety and liquidly premium of U.S. Treasuries contribute to the movements in this

spread. However, Liu (2019) �nds that an increase in U.S. government debt predicts higher risk

premia in equity and bond markets. The behavior of risk premium in this model is consistent

with Liu (2019) under an upward-sloping demand curve.

3.4 General Income Distributions

Using 1 at p = 1, I obtain:

∂q0

∂b1
∝

(aH − δ −
aL
z
)F (b1)

aL
z + b1

{
f (b1)

F (b1)
−
[ 1
aL
z + b1

+
1

aH − δ + b1

]}

−
1

aH − δ + b1

Since aL
z + b1 < aH − δ + b1, a su�cient condition for

∂q0
∂b1
> 0 is ζ (b1) > 1, where:

ζ (b1) = (aH − δ −
aL

z
)F (b1)

{
f (b1)

F (b1)
−
[ 1
aL
z + b1

+
1

aH − δ + b1

]}
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Consider a continuous distribution f (b1), which has a bounded support [b ,b]. If f (b) > 0, it is

clear that ζ (b1) > 0 for b1 close to b, as F (b1) is arbitrarily close to zero. In such a case, a high

enough aH − δ −
aL
z
implies that ζ (b1) > 1 and consequently

∂q0
∂b1
> 0.

Now consider the case f (b) = f (b ) = 0. A necessary condition for
∂q0
∂b1
> 0 is that the

expression in braces in the de�nition of ζ (b1), is positive. The �rst term in the braces, which is

the reversed hazard function
f (b1)

F (b1)
, is the derivative of ln(F (b1)). Hence, the value of

f (b1)

F (b1)
depends

on the convexity of f (b1). Therefore, I can state the following result:

Lemma 5. Suppose that f (b1) is a continuous density function over [b ,b] that satis�es f (b) = f (b) =

0, and f (b1) > 0 for (b ,b). Assume that f (b1) is convex for b1 ∈ [b , b̂], for some b < b̂ ≤ b. Then,

for a large enough aH − δ −
aL
z , one has

∂q0
∂b1
|
b̂
> 0.

Note that
∂q0
∂b1
< 0 for values of b1 close to either b or b, since f (b) = f (b) = 0. Therefore, b1

needs to be within an intermediate range, i.e., neither too low nor too high, for the demand curve

to be upward-sloping. This also implies that an upward-sloping segment for intermediate values

of b1 always comes with (at least) two in�ection points. The lower in�ection point is the value

of b1, where the price of government debt starts to increase with more supply. And the second

in�ection point is the value of b1 at which, the price of government debt starts to decrease with

more supply again.

Lemma 5 implies that as aH − δ −
aL
z becomes larger, a larger neighborhood of b̂ and, conse-

quently, a larger fraction of the interval b1 ∈ [b , b̂] exhibits upward-sloping demand curve.

When aL
z < aH − δ , a marginal increase in borrowing by the government increases the prob-

ability of default by f (b1), which increases the demand for insurance and the risk premium on

government bonds. This is the change in aggregate risk e�ect. At the same time, such an increase

in borrowing reduces the demand for government bond due to the diminishing expected marginal

utility e�ect. ζ (b1) > 0 is a necessary condition for the net of these two e�ects to be positive.

As can be seen in the expression for ζ (b1), one determinant of the net impact of these two

e�ects is the reversed hazard function
f (b1)
F (b1)

. When f (b1) is convex at its left tale, an increase in

b1 increases
f (b1)

F (b1)
. This makes it more likely to have an upward-sloping demand curve, for high

enough b1. Many unimodal distributions, such as normal, log-normal and Weibull distributions,

are convex on their left tale.5 But, note that convexity is a su�cient and not a necessary condition

for an upward-sloping demand curve.

5The left-tale of Weibull density function is convex for k > 2, where k is the shape parameter.
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3.5 Access to Other Safe Assets

In my benchmark model, I have assumed that investors do not have access to any other private

or public safe assets. But, in the real world, investors may have access to more than one type of

safe asset. Alternatively, and without explicitly modeling a second government, suppose that a

second government bond is available to investors (let’s call the two assets �rst and second gov-

ernment bonds). If default risk of the �rst and second second government bond are signi�cantly

correlated, my main results hold. The reason is that investing in the second bond cannot provide

a better hedge against aggregate risk. This might be the case, for instance, when the two issu-

ing governments have signi�cant bilateral trade and �nancial �ows and cross holdings of each

other’s assets including their government bonds. In such a case, default risk can become even

more correlated since large increases in government debts might become synchronized.6

Alternatively, assume that this second bond is risk free and that its �xed supply is equal to

br f ∗. In this case, the demand curve for b1 is given by Lemma 1, and its slope is given by 2, given

a∗L = aL + b
r f ∗ and a∗H = aH + br f ∗. In order for the �rst government bond to remain safer than

the project, one needs to have:

a∗H − δ >
a∗L
z
⇐⇒ br f ∗ <

(aH − δ −
aL
z )z

1 − z
.

Therefore, as long as br f ∗ is not too large, the results in the previous subsections hold. This

condition is based on the assumption of �xed supply, but it can also be a useful approximation

when the supply of the second government bond is inelastic enough.

But, why should access to other government bonds be limited? In the case of banks, there

are various reasons why they might prefer or even be encouraged to hold own government debt.

These include especial treatment of own government bonds by capital and liquidity regulations,

central banks’ liquidity operations, risk taking, and �nancial repression (Dell’Ariccia et al. (2018)).

4 Balance-Sheet E�ects

Another potentially important mechanism that can produce an upward-sloping demand curve

and �ight to safety for a risky government bond is when investors hold a signi�cant amount of old

government debt, that is partially �nanced by borrowing. Consider the model from the previous

sections with the same agents. The investors come into period t = 0 with an outstanding amount

of government bonds, b̃1, and an outstanding level of liabilities to the household,d1, bothmaturing

at t = 1. One can think of b̃1 as long-term bonds purchased in a previous period, which has been

6This has been the case, for instance, during the Financial Crisis of 2007-2008 and the ongoing COVID-19 reces-

sion.
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partially �nanced by d1. Similar to the benchmark model, one can think of investors as banks or

shadow banks. d1 can be thought as a proxy for leverage and captures di�erent types of funding

used by banks and shadow banks, including deposits, repo, and commercial papers. I assume that

a government default a�ects the payments of both the old and new bonds alike. Suppose that the

default value of the outstanding bonds is enough to pay the outstanding liabilities, or d1 < zb̃1.

As before, the future tax receipts are distributed according to a cumulative density F , which is

symmetric and triangular with the domain [b ,b].

As before, the FOC and the probability of default as a function of b1 + b̃1 yield the bond price

in equilibrium:

q0(b̃1,d1;b1) =
1 − F (b̃1 + b1)

(b̃1 − d1) + b1
+

zF (b̃1 + b1)

(zb̃1 − d1) + zb1
. (9)

Note that if d1 = 0, the price of bond in 9 is equal to 1

b̃1+b1
, which is strictly decreasing in b̃1

and b1. Therefore, in order to have an upward-sloping demand curve, one must have d1 > 0. b̃1

and b1, enter the price equation as a sum, which facilitates the following comparative statics:

Proposition 3. Suppose d1 ≤ zb, and that:

1 − z

z
d1

{
1

b − b
−

1

b + (1 − 2z)b

}

≥ 1 .

Then, for large enough value of b̃1 + b1 ∈ [b ,
b+b

2
]:






∂q0

∂b̃1
=

∂q0
∂b1
> 0 ,

∂2q0

∂d1∂b̃1
> 0 .

One case, in which the condition in Proposition 3 is satis�ed, is when b is large enough. The

intuition for
∂q0

∂b̃1
=

∂q0
∂b1
> 0 is similar to the previous sections. The e�ects of an increase in b1 + b̃1

are twofold. On the one hand, such an increase yields more consumption in both future states.

This e�ect depresses the price because of a lower expected marginal utility of an extra unit of

bond. On the other hand, an increase in b1b̃1 creates more risk of default, and aggregate risk.

This latter e�ect, similar to the previous case, creates more demand for insurance. Whenever the

second e�ect is dominant, an increase in initial bond holding increases the price of new bonds.
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Figure 5: Demand for government bonds for di�erent values of d1. Other parameter values are

b̃1 = 5, z = 0.2, δ = 1, τy = 5, and τȳ = 7.

The fact that b1 + b̃1 should be high enough in Proposition 3, implies that a high enough level

of old government debt can make an upward-sloping demand curve more likely. In such a case,

and as before, a higher level of b1 leads to lower real interest rate (higher q0) and higher aggregate

default risk.

The last result in Proposition 3 states that, for high enough value of debt, larger investors’

liabilities make an upward-sloping demand curve more likely (Figure 4). The intuition of this

result is as follows. The default value of the old investments, including assets b̃1 and liabilities d1,

per unit of return in the normal future state is zb̃1−d1
b̃1−d1

. This ratio is lower than z, and is decreasing

in d1. This implies that when d1 is large, the di�erential riskiness between investment in new

bonds and the old bonds is larger. Therefore, with a higher d1, an increase in b1 increases risk

and the demand for insurance even more.
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5 Conclusion

In this paper, I study the demand for risky government bonds as safe assets. I show that when

government default signi�cantly a�ects the return to other available assets, government bonds

become the safe asset. An exogenous deterioration in the future prospects, in the form of a

negative shift or a mean preserving spread of the future tax revenues distribution, increases the

price of government bonds and decreases the price of other assets, e.g., shares in the benchmark

model. This implies that such an exogenous increase in risks also increases the risk premium.

I also show that government bonds can face an upward-sloping demand curve, when they

are safe assets. This happens when the increase in default risks due to higher levels of issuance,

signi�cantly increases the demand for insurance. I show that, whether this is the case, depends

on the return portfolio of the other assets and the reversed hazard rate of the future tax revenues

distribution.

While the model is stylized, one can extend it to a fully dynamic in�nite horizon setup. Such

extension can be useful in estimating the contribution of the mechanisms discussed in this paper

to the evolution of the real rates and risk premia. The model can have welfare implications for

the conduct of �scal policy, when the economy is at the zero lower bound. If nominal frictions

make the real rate sticky, a �scal expansion that lowers the equilibrium real interest rate, can

depress the aggregate demand and welfare. These and other potentially interesting extensions of

the model can be subjects for future research.
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A Appendix: Proofs

Proof of Lemma 1. I derived the demand curve for the case δ ≤ b1 <
δ
z . I assume for the

moment that investors pay the maintenance costs if they can. I derive the demand and show it

is downward sloping only for the case b1 ≥
δ
z , as the third case b1 < δ is very similar. When

b1 ≥
δ
z
, investors pay the maintenance costs in all future states. Therefore, the payo�s in the

default and no-default states are aH − δ + zb1 and aH − δ + b1, respectively. Thus, the demand

function immediately follows from the FOCs of the investors. For b1 ≥
δ
z , taking the derivative

with respect to b1, I obtain:

∂q0

∂b1
= −

{[ 1 − F (b1)

(aH − δ + b1)2
+

zF (b1 )

(aH − δ + zb1)2

]

+
[ 1

aH − δ + b1
−

z

aH − δ + zb1

]

f (b1)
}

< 0 .

Note that both terms inside the braces are strictly positive. Next, I need to show that given

Assumption 1, investors choose to pay the maintenance costs if they can. Investors pay the

maintenance costs, under no default, if:

ln(aH − δ + b1) ≥ p ln(aL + b1) + (1 − p) ln(aH + b1) ⇐⇒
aH − δ + b1

aH + b1
≥
( aL + b1

aH + b1

)p
.

De�ne the function γ (b1) as the di�erence between the LHS and the RHS of the �rst inequality

above:

γ (b1) ≡ ln(aH − δ + b1) − (p ln(aL + b1) + (1 − p) ln(aH + b1)) ⇒

⇒
∂γ

∂b1
=

1

aH + b1

( δ

aH − δ + b1
−
p(aH − aL )

aL + b1

)

.

Under Assumption 1, the term inside the parentheses is strictly negative, hence,
∂γ
∂b1
< 0. This

implies that if γ (b1) > 0, then γ (b̃1) > 0 for all b̃1 < b1, and speci�cally γ (zb1) > 0. Therefore,

it su�ces to �nd a lower bound for p that works under the no default state. Using the second

inequality above, I obtain:

aH − δ + b1

aH + b1
≥
( aL + b1

aH + b1

)p
⇐⇒ p ≥

ln(aH + b1) − ln(aH − δ + b1)

ln(aH + b1) − ln(aL + b1)
≡ h(b1) .

Taking the derivative, one has:

∂h

∂b1
=

(
1

aH+b1
− 1

aH−δ+b1

)

(ln(aH + b1) − ln(aL + b1)) −
(

1
aH+b1

− 1
aL+b1

)

(ln(aH + b1) − ln(aH − δ + b1))

(ln(aH + b1) − ln(aL + b1))2
> 0 .
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Since h(b1) is an increasing function, if h(b1) has a limit as b1 → ∞, that limit can provide a

su�cient condition on p. Both the numerator and the denominator of h(b1) go to zero as b1 → ∞.

The limit, using the L’Hopital’s rule is given by:

lim
b1→∞

h(b1) = lim
b1→∞

1
aH+b1

− 1
aH−δ+b1

1
aH+b1

− 1
aL+b1

=

δ

aH − aL
lim
b1→∞

aL + b1

aH − δ + b1
=

δ

aH − aL
.

Therefore, if p ≥ δ
aH−aL

, investors pay for the maintenance costs if they can.

Proof of Lemma 2. Note that:






1
aH−δ+b1

< 1
aL

z
+b1
,

aH−δ
aH−δ+b1

>
aL

z
aL

z
+b1
.

Therefore, it su�ces to show that F̃ (b1) > F (b1) for all b1 ∈ [b ,
b+b

2
). To see this, note that:

F̃ (b1) > F (b1) ⇐⇒
b1 − b + ϵ

b − b + 2ϵ
>
b1 − b

b − b
⇐⇒ b − b > 2(b1 − b) ⇐⇒ b1 <

b + b

2
.

Proof of Proposition 1. I can rewrite the expression in 2 as follows:

∂q0

∂b1
= −

1 − F (b1)

(aH − δ + b1)2
−
[ (1 − p)z2

(aH + zb1)2
+

pz2

(aL + zb1)2

]

F (b1)+

+
[ (1 − p)z

aH + zb1
+

pz

aL + zb1
−

1

aH − δ + b1

]

f (b1) .

It is clear from the above that the �rst two terms in the �rst line above are negative. If aH −δ ≤
aL
z ,

the third term in the second line would be non-positive regardless of the value of p, implying that
∂q0
∂b1
< 0. Therefore aH − δ > aL

z is a necessary condition for an upward-sloping demand curve.

To have an upward-sloping demand curve, the last term in the expression for
∂q0
∂b1

above needs to

be strictly positive. This is the case i�:
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(1 − p)z

aH + zb1
+

pz

aL + zb1
−

1

aH − δ + b1
> 0 ⇐⇒

( 1
aL
z + b1

−
1

aH − δ + b1

)

−
( 1
aL
z + b1

−
1

aH
z + b1

)

(1 − p) > 0 ,

⇐⇒ 1 − p <
z(aH − δ −

aL
z )

aH − aL

aH
z + b1

aH − δ + b1
.

But,
aH

z
+b1

aH−δ+b1
<

aH

z

aH−δ
, as the numerator is larger than the denominator. Therefore, one has:

∂q0

∂b1
> 0⇒ 1 − p <

z(aH − δ −
aL
z
)

aH − aL

aH
z

aH − δ
=

aH

aH − aL

aH − δ −
aL
z

aH − δ
<

aH −
aL
z

aH − aL
⇒ ,

⇒ p >
aL (1 − z)

(aH − aL)z
.

To see the last result, note that we can collect all terms multiplying 1−p, and rewrite the expres-

sion for
∂q0
∂b1

as follows:

∂q0

∂b1
= −
( 1 − F (b1)

(aH − δ + b1)2
+

f (b1)

aH − δ + b1

)

+
f (b1)
aL
z
+ b1
−

F (b1)

( aL
z
+ b1)2

+

+
{ [ 1

( aLz + b1)2
−

1

( aHz + b1)2

]

F (b1) −
[ 1
aL
z + b1

−
1

aH
z + b1

]

f (b1)
}

(1 − p) .

But, one has:

∂q0

∂b1
|p=1 = −

1

(aH − δ + b1)2
+
[

f (b1) −
( 1
aL
z + b1

+
1

aH + b1

)

F (b1)
] ( 1

aL
z + b1

−
1

aH + b1

)

If
∂q0
∂b1
|p=1 > 0, it must be that f (b1) −

(
1

aL

z
+b1

+ 1
aH+b1

)

F (b1) > 0. This implies that the term

that is multiplied by 1 − p in the expression for
∂q0
∂b1

must be strictly negative as 1
aL

z
+b1

+ 1
aH

z
+b1
<

1
aL

z
+b1

+ 1
aH+b1

. This implies:

∂q0

∂b1
|p=1 > 0⇒

∂2q0

∂p∂b1
> 0 .

Proof of Lemma 3. One has:
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∂q0

∂д0
=

∂q0
∂b1

∂д0
∂b1

=

∂q0
∂b1

q0 +
∂q0
∂b1

b1
.

It is clear from the above that if
∂q0
∂b1
≥ 0, one has

∂q0
∂д0
≥ 0.

Proof of Proposition 2. For the triangular distribution, the expression for
∂q0
∂b1

in 2, forp = 1

and b1 ∈ [b ,
b+b

2
] becomes:

∂q0

∂b1
=

1

aH − δ + b1

{aH −
aL
z
− δ

aL
z
+ b1

(b1 − b

b − b

)2{ 2

b1 − b
−
[ 1
aL
z
+ b1

+
1

aH − δ + b1

] }

−
1

aH − δ + b1

}

.

Note that the term in the �rst pair of inner braces is strictly positive. Suppose that aH −
aL
z − δ is

large enough, such that:

λ(b̃1) ≡ (aH −
aL

z
− δ )

(b̃1 − b

b − b

)2{ 2

b̃1 − b
−
[ 1
aL
z
+ b̃1

+
1

aH − δ + b̃1

] }

≥ 1 .

The derivative of λ(b̃1) is:

∂λ

∂b̃1
∝

(

1 −
b̃1 − b
aL
z + b̃1

)2

+
(

1 −
b̃1 − b

aH − δ + b̃1

)2

> 0 .

Since 1
aL

z
+b1
> 1

aH−δ+b1
and that λ(b1) ≥ 1 for allb1 ∈ [b̃1 ,

b+b

2
], one has

∂q0
∂b1
> 0 for allb1 ∈ [b̃1 ,

b+b

2
].

For the last part of the proof, it su�ces to note that λ(b1) → 0, as b1 → b.

Proof of Lemma 4. Using 5, I obtain:

qa0
q0
= aH − δ − (aH −

aL

z
− δ )

zF (b1)
aL+zb1

zF (b1)
aL+zb1

+
1−F (b1 )
aH−δ+b1

.

De�ne:

ζ1 (b1) ≡

zF (b1)
aL+zb1

zF (b1)
aL+zb1

+
1−F (b1 )
aH−δ+b1

.

Then, one has:

1

ζ1 (b1)
= 1 +

(1 − F (b1))(
aL
z
+ b1)

F (b1)(aH − δ + b1)
.
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If I de�ne ζ2 (b1) ≡
(1−F (b1 ))(

aL

z
+b1)

F (b1)(aH−δ+b1 )
, then:

∂ζ2

∂b1
∝(aH −

aL

z
− δ )(1 − F (b1))F (b1) − (aH − δ + b1)(

aL

z
+ b1) f (b1) =

− (aH − δ + b1)(
aL

z
+ b1)

{

f (b1) −
[ 1
aL
z
+ b1
−

1

aH − δ + b1

]

(1 − F (b1))F (b1)
}

.

From the proof of Proposition 1, one knows that if
∂q0
∂b1
|p=1 > 0, it must be that f (b1) −

(
1

aL

z
+b1

+

1
aH+b1

)

F (b1) > 0. This immediately implies that, if
∂q0
∂b1
|p=1 > 0 then

∂ζ2
∂b1
< 0. But, if ζ2(b1) is

decreasing in b1, ζ1 (b1) must be increasing, and
qa0
q0

(
q0
qa0
) must be decreasing (increasing) in b1.

Proof of Lemma 5. Since f (b1) is convex for b1 ∈ (b , b̂), one has:

f (b1) ≤ λf (b) + (1 − λ) f (b̂ ) .

Where, b1 = λb + (1 − λ)b̂. This implies that the area under f (b1) between b and b̂, which is

equal to F (b̂ ), is not larger than the area of the triangle with the base b̂ − b and height of f (b̂).

Therefore, one has:

f (b̂)

F (b̂ )
≥

f (b̂)

1
2
(b̂ − b ) f (b̂ )

=

2

b̂ − b
.

Hence, f (b̂) −
(

1
aL

z
+b̂

+ 1

aH+b̂

)

F (b̂) > 0. This implies that if aH −
aL
z − δ is large enough, it must be

that
∂q0
∂b1
|
b̂
> 0.

Proof of Proposition 3. The price of new bonds is:

q0 =
1 − F (b̃1 + b1)

b̃1 − d1 + b1
+

zF (b̃1 + b1)

zb̃1 − d1 + zb1
.

Taking the derivative, I obtain:

∂q0

∂b1
=

∂q0

∂b1
=

1

b̃1 + b1 − d1
×

×

{ 21−z
z
d1

b̃1 + b1 −
d1
z

( b̃1 + b1 − b

b − b

)2{ 2

b̃1 + b1 − b
−
[ 1

b̃1 + b1 −
d1
z

+
1

b̃1 + b1 − d1

] }

−
1

b̃1 + b1 − d1

}

.

28



De�ne:

λ̂(b̃1 + b1) ≡ 2
1 − z

z
d1

(b̃1 + b1 − b

b − b

)2{ 2

b̃1 + b1 − b
−
[ 1

b̃1 + b1 −
d1
z

+
1

b̃1 + b1 − d1

] }

.

It su�ces to show that λ̂(
b+b

2
) ≥ 1. To see this, note that:

λ̂(
b + b

2
) =

1 − z

z
d1
{ 2

b − b
−
[ 1

b + b − 2d1
z

+
1

b + b − 2d1

] }

>
1 − z

z
d1
{ 1

b − b
−

1

b + (1 − 2z)b

}

≥ 1 .

where I have used the fact that d1 ≤ zb. For the last part of the proof and to simplify the exposi-

tions, de�ne x ≡ b̃1 +b1. Taking the derivative of κ ≡ (b̃1 +b1 −d1)
∂q0
∂b1

with respect to d1, I obtain:

∂κ

∂d1
=2
(x − b

b − b

)2{ (1 − z)zx

(zx − d1)2

[ 2

x − b
−
( z

zx − d1
+

1

x − d1

)]

−
(1 − z)d1

zx − d1

[ z

(zx − d1)2
+

1

(x − d1)2

] }

−

−
1

(x − d1)2
.

Therefore:

∂κ

∂d1
> 2
(x − b

b − b

)2 (1 − z)zx

(zx − d1)2

[ 2

x − b
−

2z

zx − d1

]

−
z

(zx − d1)2

{ [

2
(x − b

b − b

)2 2(1 − z)d1

zx − d1

]

+ 1
}

=

=

z

(zx − d1)2

{

4(1 − z)
(x − b

b − b

)2 [ x

x − b
−

zx + d1

zx − d1

]

− 1
}

.

For ∂κ
∂d1
> 0, it is su�cient that the term in braces in the last line above is positive. One has:

4(1 − z)
(x − b

b − b

)2 [ x

x − b
−

zx + d1

zx − d1

]

− 1 =
4(1 − z)

(b − b)2

(x − b )(d1z b + (b − 2d1z )x )

x − d1
z

− 1 .
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At x =
b+b

2
, the expression above, excluding the minus one at the end, becomes:

4(1 − z)

(b − b )2

(x − b )(d1
z
b + (b − 2d1

z
)x )

x − d1
z

=

2(1 − z)

1 −
b

b

b

b

b+b

2
−

d1
z

b+b

2
−

d1
z

> 2(1 − z)
(

b

b

1 −
b

b

)2

>

> 2(1 − z)2
(

b

b

1 −
b

b

)2 b − b

b + (1 − 2z)b
= (1 − z)b

{ 1

b − b
−

1

b + (1 − 2z)b

}

≥

≥
1 − z

z
d1
{ 1

b − b
−

1

b + (1 − 2z)b

}

≥ 1 .

Hence, ∂κ
∂d1
> 0 and consequently

∂2q0
∂d1∂b1

> 0 at x =
b+b

2
. This impels that within a neighborhood

of
b+b

2
, or for high enough values of b̃1 + b1, one must have

∂2q0
∂d1∂b1

> 0.
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